试题

题目:
观察下列等式:
|1-
2
|=
2
-1
|
2
-
3
|=
3
-
2
|
3
-
4
|=
4
-
3

将以上三个等式相加得|
1
-
2
|+|
2
-
3
|+|
3
-
4
|=
2
-1+
3
-
2
+
4
-
3
=
4
-1=2-1=1

(1)猜想并写出:|
n
-
n+1
|
=
n+1
-
n
n+1
-
n

(2)直接写出下列格式的计算结果|
1
-
2
|+|
2
-
3
|+…+|
2012
-
2013
|
=
2013
-1
2013
-1
|
1
-
2
|+|
2
-
3
|+…+|
n
-
n+1
|
=
n+1
-1
n+1
-1

答案
n+1
-
n

2013
-1

n+1
-1

解:(1)∵|1-
2
|=
2
-1,|
2
-
3
|=
3
-
2
,|
3
-
4
|=
4
-
3

∴|
n
-
n+1
|=
n+1
-
n

故答案为:
n+1
-
n


(2)∵|
1
-
2
|+|
2
-
3
|+|
3
-
4
|=
2
-1+
3
-
2
+
4
-
3

=
2
-1+
3
-
2
+
4
-
3

=
4
-1
=2-1
=2,
∴|
1
-
2
|+|
2
-
3
|+…+|
2012
-
2013
|
=
2
-1+
3
-
2
+…+
2013
-
2012

=
2013
-1;
同理可得,|
1
-
2
|+|
2
-
3
|+…+|
n
-
n+1
|
=
2
-1+
3
-
2
+…+
n+1
-
n

=
n+1
-1.
故答案为:
2013
-1,
n+1
-1.
考点梳理
实数的运算.
(1)根据题中所给出的式子进行猜想即可;
(2)根据题中所给出的例子进行解答即可.
本题考查的是实数的运算,根据题意找出规律是解答此题的关键.
规律型.
找相似题