试题

题目:
青果学院如图,在Rt△ABC中,∠A=90°,AC=6cm,AB=8cm,现将AB边翻折,使AB边落在BC边上,点A落在点E处,折痕为BD,那tan∠DBE的值为(  )



答案
C
解:∵在Rt△ABC中,∠A=90°,AC=6cm,AB=8cm,
∴BC=
AC2+AB2
=10(cm),
由折叠的性质可得:BE=AB=8cm,DE=AD,∠BED=∠A=90°,
∴CE=BC-BE=10-8=2(cm),
设DE=xcm,则AD=xcm,CD=AC-AD=6-x(cm),
在Rt△CDE中,DE2+CE2=CD2
∴x2+22=(6-x)2
解得:x=
8
3

∴tan∠DBE=
DE
BE
=
8
3
8
=
1
3

故选C.
考点梳理
翻折变换(折叠问题).
根据折叠的性质,利用勾股定理即可求得DE的长,然后由正切函数的定义,即可求得tan∠DBE的值.
此题考查了折叠的性质、勾股定理以及正切函数的定义.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.
找相似题