答案
解:如图2,∵四边形DFGH与四边形BAGH关于GH对称,
∴四边形DFGH≌四边形BAGH,
∴DH=BH,FD=BA,FG=AG,∠GHB=∠GHD.∠F=∠A.

∵四边形ABCD是矩形,
∴∠A=∠B=90°,AB=CD,AD=BC,AD∥BC,
∴∠DGH=∠GHB,
∴∠DGH=∠GHD,
∴GD=HD.
∴GD=DH=BH.
∵AB=6,BC=8,
∴DF=CD=6,AD=8.
设BH=x,则HC=8-x,由勾股定理,得
x
2=(8-x)
2+36,
解得:x=
.
∴GD=HD=
,
∴AG=
,
∴EH=
.
在Rt△GEH中,由勾股定理,得
GH=
.
答:GH=7.5.
解:如图2,∵四边形DFGH与四边形BAGH关于GH对称,
∴四边形DFGH≌四边形BAGH,
∴DH=BH,FD=BA,FG=AG,∠GHB=∠GHD.∠F=∠A.

∵四边形ABCD是矩形,
∴∠A=∠B=90°,AB=CD,AD=BC,AD∥BC,
∴∠DGH=∠GHB,
∴∠DGH=∠GHD,
∴GD=HD.
∴GD=DH=BH.
∵AB=6,BC=8,
∴DF=CD=6,AD=8.
设BH=x,则HC=8-x,由勾股定理,得
x
2=(8-x)
2+36,
解得:x=
.
∴GD=HD=
,
∴AG=
,
∴EH=
.
在Rt△GEH中,由勾股定理,得
GH=
.
答:GH=7.5.