试题
题目:
如图,正方形ABCD的边长为4,点E是AB边上的一点,将△BCE沿着CE折叠至△FCE,若CF、CE恰好与正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为( )
A.
5
3
B.5
C.
8
3
3
D.以上都不对
答案
C
解:连接OC,则∠DCO=∠BCO,∠FCO=∠ECO,
∴∠DCO-∠FCO=∠BCO-∠ECO,即∠DCF=∠BCE,
又∵△BCE沿着CE折叠至△FCE,
∴∠BCE=∠ECF,
∴∠ECF=∠BCE=
1
3
∠BCD=30°,
在RT△BCE中,设BE=x,则CE=2x,
得CE
2
=BC
2
+BE
2
,即4x
2
=x
2
+4
2
,
解得BE=
4
3
3
,
∴CE=2x=
8
3
3
.
故选C.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
连接OC,则根据正方形的性质可推出∠ECF=∠BCE=
1
3
∠BCD=30°,在RT△BCE中,设BE=x,则CE=2x,利用勾股定理可得出x的值,也即可得出CE的长度.
此题考查了翻折变换的知识,解答本题的关键是根据切线的性质得到∠BCE=∠ECF=∠BCE=
1
3
∠BCD=30°,有一定难度.
压轴题;数形结合.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )