试题
题目:
河的一旁有两个村子A、B,要在河边建一水泵站引水到村里.一村民画了一张图,以直线l表示一条河,在河的另一边作A的对称点C,连接BC得与l的交点P,那么P到A、B的距离和总比l上其它点到A、B的距离和短,你能说出其中的道理吗?
答案
解:在直线l上任取一点Q,连接AQ、BQ,
∵A、C两点关于直线l轴对称,
∴AP=PC,AQ=CQ,CP+PB=BC,
又在△BCQ中,由三边关系定理,得BQ+CQ>BC,
即BQ+AQ>CP+BP,
∴BQ+CQ>AP+BP.
解:在直线l上任取一点Q,连接AQ、BQ,
∵A、C两点关于直线l轴对称,
∴AP=PC,AQ=CQ,CP+PB=BC,
又在△BCQ中,由三边关系定理,得BQ+CQ>BC,
即BQ+AQ>CP+BP,
∴BQ+CQ>AP+BP.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题.
根据轴对称的性质,三角形三边关系定理判定线段的大小.
本题考查了三角形三边关系和最短线路问题.解题的关键是根据“三角形两边之和大于第三边”,判断AP+BP最小.
计算题.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.