试题
题目:
如图,已知直线l和点A、B,在直线l上找一点P,使△PAB的周长最小,请说明理由.
答案
解:作法:
(1)作A关于l的对称点A′,
(2)连接A′B交l于点P.
则点P就是所要求作的点.
理由:在l上取不同于P的点P′,连接AP′、BP′.
∵A和A′关于直线l对称,
∴PA=PA′,P′A=P′A′,
而A′P+BP<A′P′+BP′
∴PA+BP<AP′+BP′
∴AB+AP+BP<AB+AP′+BP′
即△ABP周长小于△ABP′周长.
解:作法:
(1)作A关于l的对称点A′,
(2)连接A′B交l于点P.
则点P就是所要求作的点.
理由:在l上取不同于P的点P′,连接AP′、BP′.
∵A和A′关于直线l对称,
∴PA=PA′,P′A=P′A′,
而A′P+BP<A′P′+BP′
∴PA+BP<AP′+BP′
∴AB+AP+BP<AB+AP′+BP′
即△ABP周长小于△ABP′周长.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题.
由于△PAB的周长=PA+AB+PB,而AB是定值,故只需在直线l上找一点P,使PA+PB最小.如果设A关于l的对称点为A′,使PA+PB最小就是使PA′+PB最小.
解这类问题的关键是把两条线段的和转化为一条线段,运用三角形三边关系解决.
作图题.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.