试题
题目:
如图,直线l是一条河,A、B是两个村庄,欲在l上的某处修建一个水泵站M,向A、B两地供水,要使所需管道MA+MB的长度最短,在图中标出M点(不写作法,不要求证明,保留作图痕迹)
答案
解:作点A关于直线l的对称点A′,连接A′B交直线l于点M,则点M即为所求点.
解:作点A关于直线l的对称点A′,连接A′B交直线l于点M,则点M即为所求点.
考点梳理
考点
分析
点评
轴对称-最短路线问题.
作点A关于直线l的对称点A′,连接A′B交直线l于点M,则点M即为所求点.
本题考查的是轴对称-最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.