试题
题目:
如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边上一点,若AE=2,求EM+BM的最小值.
答案
解:连接CE,与AD交于点M.则CE就是BM+ME的最小值.
取BE中点F,连接DF.
∵等边△ABC的边长为6,AE=2,
∴BE=AB-AE=6-2=4,
∴BF=FE=AE=2,
又∵AD是BC边上的中线,
∴DF是△BCE的中位线,
∴CE=2DF,CE∥DF,
又∵E为AF的中点,
∴M为AD的中点,
∴ME是△ADF的中位线,
∴DF=2ME,
∴CE=2DF=4ME,
∴CM=
3
4
CE.
在直角△CDM中,CD=
1
2
BC=3,DM=
1
2
AD,
CM=
C
D
2
+M
D
2
=
3
7
2
,
CE=
4
3
×
3
7
2
=2
7
,
∵BM+ME=CE,
∴BM+ME的最小值为2
7
.
解:连接CE,与AD交于点M.则CE就是BM+ME的最小值.
取BE中点F,连接DF.
∵等边△ABC的边长为6,AE=2,
∴BE=AB-AE=6-2=4,
∴BF=FE=AE=2,
又∵AD是BC边上的中线,
∴DF是△BCE的中位线,
∴CE=2DF,CE∥DF,
又∵E为AF的中点,
∴M为AD的中点,
∴ME是△ADF的中位线,
∴DF=2ME,
∴CE=2DF=4ME,
∴CM=
3
4
CE.
在直角△CDM中,CD=
1
2
BC=3,DM=
1
2
AD,
CM=
C
D
2
+M
D
2
=
3
7
2
,
CE=
4
3
×
3
7
2
=2
7
,
∵BM+ME=CE,
∴BM+ME的最小值为2
7
.
考点梳理
考点
分析
点评
轴对称-最短路线问题;等边三角形的性质.
要求EM+BM的最小值,需考虑通过作辅助线转化EM,BM的值,从而找出其最小值求解.
此题主要考查了轴对称-最短路线问题和等边三角形的性质和轴对称及勾股定理等知识的综合应用,根据已知得出M点位置是解题关键.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.