试题
题目:
已知点A(0,2)、B(4,0),点C、D分别在直线x=1与x=2上,且CD∥x轴,则AC+CD+DB的最小值为
13
+1
13
+1
.
答案
13
+1
解:作法如图,过A作直线x=1的垂线,垂足为M,连接BM交直线x=2于D点,过D点作直线x=1的垂线,垂足为C点,
此时,AC+CD+DB的最小,AC+CD+DB=MD+CD+DB=BM+CD=
MN
2
+
NB
2
+CD=
13
+1.
故答案为:
13
+1.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题;坐标与图形性质.
可以把直线x=1,x=2形成的图形理解为一条河,CD为一座桥,求AC+CD+DB的最小值,可转化为“修桥问题”.
本题考查了最短路线问题,解题的关键是将实际问题转化为数学模型“修桥问题”,结合图形进行计算.
综合题.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.