试题
题目:
(1)已知:图1中,点M、N在直线l的同侧,在l上求作一点P,使得PM+PN的值最小.(不写作法,保留作图痕迹)
(2)图2中,联结M、N与直线l相交于点O,当两直线的夹角等于45°,且OM=6,MN=2时,PM+PN的最小值是
10
10
.
答案
10
解:
(1)如图所示:作出点M关于直线l的对称点M′,连结M′N交直线l于点P;
(2)作出点M关于直线l的对称点M′,连结M′N交直线l于点P;
∵两直线的夹角等于45°,且OM=6,MN=2,
∴∠MOP=45°,OM=OM′=6,NO=8,
∴∠NOM′=90°,
∴M′N=
6
2
+
8
2
=10,
故答案为:10.
考点梳理
考点
分析
点评
轴对称-最短路线问题.
(1)利用轴对称求最值作法得出P点位置即可;
(2)利用相同的作法得出答案,进而利用勾股定理求出即可.
此题主要考查了利用轴对称求最短路径问题和勾股定理等知识,利用对称性得出P点位置是解题关键.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.