试题
题目:
已知点A(1,1),点B(3,3),点C是y轴上一动点,当点C运动到
(0,
3
2
)
(0,
3
2
)
位置时(填坐标),△ABC的周长最小.
答案
(0,
3
2
)
解:作出点B关于y轴的对称点B′,连接AB′交y轴于点C,由对称的性质可知,CB=CB′,
故CB+AC=AB′,由两点之间线段最短可知,AB′即为CA+CB的最小值,
则此时△ABC的周长最小,
设过AB′两点的直线解析式为y=kx+b(k≠0),
∵点B的坐标是(3,3),
∴B′的坐标是(-3,3),
∴
1=k+b
3=-3k+b
,
解得:
k=-
1
2
b=
3
2
,
∴此函数的解析式为y=-
1
2
x+
3
2
,当x=0时,y=
3
2
,
故点C的坐标是(0,
3
2
).
故答案为:(0,
3
2
).
考点梳理
考点
分析
点评
轴对称-最短路线问题;坐标与图形性质.
根据题意画出图形,作出点B关于y轴的对称点B′,连接AB′交y轴于点C,则点C即为所求点,用待定系数法求出AB′的直线解析式,求出此解析式与y轴的交点即可.
本题考查的是最短路线问题及用待定系数法求一次函数的解析式,熟知一次函数的性质是解答此类问题的关键.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.