试题
题目:
如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是
1000
1000
米.
答案
1000
解:作出A的对称点A′,连接A′B与CD相交于M,则牧童从A处把牛牵到河边饮水再回家,最短距离是A′B的长.
易得△A′CM≌△BDM,
AC=BD,所以A′C=BD,则
A′C
BD
=
CM
MD
,
所以CM=DM,M为CD的中点,
由于A到河岸CD的中点的距离为500米,
所以A′到M的距离为500米,
A′B=1000米.
故最短距离是1000米.
考点梳理
考点
分析
点评
轴对称-最短路线问题.
根据轴对称的性质和“两点之间线段最短”,连接A′B,得到最短距离为A′B,再根据相似三角形的性质和A到河岸CD的中点的距离为500米,即可求出A'B的值.
此题考查了轴对称的性质和“两点之间线段最短”,解答时要注意应用相似三角形的性质.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.