试题
题目:
直角坐标系中.有四个点A(-8.3),B(-4,5),C(0,n),D(m,0),当四边形ABCD的周长最短时,则
m
n
=
-
3
2
-
3
2
.
答案
-
3
2
解:根据题意,作出如图所示的图象:
过点B作B关于y轴的对称点B′、过点A关于x轴的对称点A′,连接A′B′,直线A′B′与坐标轴交点即为所求.
设过A′与B′两点的直线的函数解析式为y=kx+b.
∵A(-8,3),B(-4,5),
∴A′(-8,-3),B′(4,5),
依题意得:
-3=-8k+b
5=4k+b
,
解得
k=
2
3
b=
7
3
,
所以,C(0,n)为(0,
7
3
).
D(m,0)为(-
7
2
,0)
所以,
m
n
=-
3
2
.
故答案为-
3
2
.
考点梳理
考点
分析
点评
轴对称-最短路线问题;坐标与图形性质.
若四边形的周长最短,由于AB的值固定,则只要其余三边最短即可,根据对称性作出A关于x轴的对称点A′、B关于y轴的对称点B′,求出A′B′的解析式,利用解析式即可求出C、D坐标,得到
m
n
.
此题将轴对称--最短路径问题与待定系数法求函数解析式相结合,考查了同学们的综合应用能力.正确作出图形是解题的关键.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.