试题
题目:
如图,在边长为1正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,3AE=EB,有一只蚂蚁从E点出发,经过F、G、H,最后回点E点,则蚂蚁所走的最小路程是
2
2
2
2
.
答案
2
2
解:延长DC到D',使CD=CD',G对应位置为G',则FG=FG',
同样作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,
再作A'B'⊥D'A',E的对应位置为E',
则H'E'=HE.
容易看出,当E、F、G'、H'、E'在一条直线上时路程最小,
最小路程为EE'=
(2AB)
2
+(2BC)
2
=
4+4
=2
2
,
故答案为:2
2
.
考点梳理
考点
分析
点评
轴对称-最短路线问题.
延长DC到D',使CD=CD',G对应位置为G',则FG=FG',作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.由两点之间线段最短可知当E、F、G'、H'、E'在一条直线上时路程最小,再延长AB至K使BK=AB,连接E′K,利用勾股定理即可求出EE′的长.
本题考查的是最短路线问题,解答此题的关键是画出图形,根据正方形的性质和轴对称的性质以及垂直平分线性质定理和两点之间线段最短的道理求解.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.