答案
18
6
解:(1)∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P
1、P
2,
∴OP=OP
1=OP
2=6,且∠P
1OP
2=2∠AOB=60°,
∴故△OP
1P
2是等边三角形.
∴△P
1OP
2的周长=3×6=18;
(2)分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.
∵点P关于OA的对称点为C,关于OB的对称点为D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵点P关于OB的对称点为D,
∴PN=DN,OP=OD,∠DOB=∠POB,

∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等边三角形,
∴CD=OC=OD=6.
∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=6.
故答案为:18;6.