试题
题目:
已知:如图,四边形ABCD中,∠ABC=60°,AB=BC=2,对角线BD平分∠ABC,E是BC的中点,P是对角线BD上的一个动点,则PE+PC的最小值为( )
A.
3
B.
3
2
C.2
D.
2
答案
A
解:∵BA=BC=2,
∴平行四边形ABCD为菱形.
∴∠ABD=∠CBD,
∴BD是∠ABC的平分线.
作E关BD的对称点E′,
连接CE′,PE,
则PE=PE′,
此时,PE+PC=PE′+PC=CE′,
CE′即为PE+PC的最小值.
∵∠ABC=60°,
又∵BE′=BE,
∴△E′BE为正三角形,EE′=1,∠ABE=60°,
故EE′=EC,
∠EE′C=∠ECE′=30°,
∴∠BE′C=60°+30°=90°,
在Rt△BCE′中,
CE′=
2
2
-1
2
=
3
.
故选:A.
考点梳理
考点
分析
点评
轴对称-最短路线问题.
根据菱形的判定,得出平行四边形ABCD为菱形,作出E关于BD的对称点E′,转化为线段长度的问题,再根据等边三角形的性质判断出△BCE′为直角三角形,利用勾股定理即可求出CE′的长.
此题考查了轴对称---最短路径问题,内容涉及菱形的性质和判定、等边三角形的性质和判定及勾股定理,综合性较强.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.