试题
题目:
如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为( )
A.
2
7
B.4
C.
3
7
D.1+
2
7
答案
A
解:连接BE,与AD交于点G.
∵△ABC是等边三角形,AD是BC边上的中线,
∴AD⊥BC,
∴AD是BC的垂直平分线,
∴点C关于AD的对应点为点B,
∴BE就是EM+CM的最小值.
∴G点就是所求点,即点G与点M重合,
取CE中点F,连接DF.
∵等边△ABC的边长为6,AE=2,
∴CE=AC-AE=6-2=4,
∴CF=EF=AE=2,
又∵AD是BC边上的中线,
∴DF是△BCE的中位线,
∴BE=2DF,BE∥DF,
又∵E为AF的中点,
∴M为AD的中点,
∴ME是△ADF的中位线,
∴DF=2ME,
∴BE=2DF=4ME,
∴BE=
4
3
BM.
在直角△BDM中,BD=
1
2
BC=3,DM=
1
2
AD=
3
3
2
,
∴BM=
BD
2
+
DM
2
=
3
2
7
,
∴BE=
4
3
×
3
2
7
=2
7
.
∵EM+CM=BE
∴EM+CM的最小值为
2
7
.
故选A.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题;等边三角形的性质.
要求EM+CM的最小值,需考虑通过作辅助线转化EM,CM的值,从而找出其最小值求解.
考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.
动点型.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.