试题
题目:
如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A=
30°
30°
时,ED恰为AB的中垂线.
答案
30°
解:当∠A=30°时,ED恰为AB的中垂线,
理由是:∵BE平分∠CDA,
∴∠CBE=∠DBE,
∵∠C=90°,∠A=30°,
∴∠CBA=60°,
∴∠EBD=∠CBE=
1
2
∠CBA=30°,
即∠A=∠EBA,
∴BE=AE,
∵ED⊥AB,
∴BD=AD,
即当∠A=30°时,ED恰为AB的中垂线,
故答案30°.
考点梳理
考点
分析
点评
专题
线段垂直平分线的性质;三角形内角和定理;等腰三角形的性质.
求出∠CBA,求出∠EBA=∠A=30°,得出BE=AE,根据三线合一定理求出BD=AD,即可得出答案.
本题考查了三角形的内角和定理,等腰三角形的性质的应用,关键是求出BE=AE,主要考查学生运用性质进行推理的能力,题型较好,是一道具有代表性的题目.
证明题.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )