试题
题目:
如图:在△ABC中,AB=AC,BC=BD,AD=DE=EB,则∠A=
45°
45°
.
答案
45°
解:∵DE=EB
∴设∠BDE=∠ABD=x,
∴∠AED=∠A=2x,
∴∠BDC=∠C=∠ABC=3x,
在△ABC中,3x+3x+2x=180°,
解得x=22.5°.
∴∠A=2x=22.5°×2=45°.
故答案为:45°.
考点梳理
考点
分析
点评
等腰三角形的性质.
根据同一个三角形中等边对等角的性质,设∠ABD=x,结合三角形外角的性质,则可用x的代数式表示∠A、∠ABC、∠C,再在△ABC中,运用三角形的内角和为180°,可求∠A的度数.
考查了等腰三角形的性质.①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;
②求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;
③三角形的外角通常情况下是转化为内角来解决.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )