试题
题目:
如图,在△ABC中,∠C=25°,AD⊥BC,垂足为D,且AB+BD=CD,则∠BAC的度数是
105
105
度.
答案
105
解:延长DB至E,使BE=AB,连接AE
∵AB+BD=CD
∴BE+BD=CD
即DE=CD,
∵AD⊥BC,
∴AD垂直平分CE,∴AC=AE,
∴∠C=∠E=25°
∵BE=AB
∴∠ABD=2∠E=50°
∴∠BAC=105°.
故填105.
考点梳理
考点
分析
点评
等腰三角形的性质.
延长DB至E,使BE=AB,连接AE,则DE=CD,从而可求得∠C=∠E,再根据外角的性质即可求得∠B的度数,根据三角形内角和公式即可求得∠BAC的度数.
此题考查了等腰三角形的性质及三角形内角和定理等知识点的综合运用.作出辅助线是正确解答本题的关键.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )