试题
题目:
如果等腰三角形的两边长分别是4、8,那么它的周长是
20
20
.
答案
20
解:∵等腰三角形有两边分别分别是4和8,
∴此题有两种情况:
①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,
②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.
∴该等腰三角形的周长为20,
故答案为:20
考点梳理
考点
分析
点评
等腰三角形的性质;三角形三边关系.
解决本题要注意分为两种情况4为底或8为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.
本题考查了等腰三角形性质;解题时涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )