试题
题目:
如图:在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=110°,∠B=40°,则∠CAE=
30
30
°.
答案
30
解:在△ADB与△AEC中,
AD=AE
∠ADB=∠AEC=110°
BD=EC
,
∴△ADB≌△AEC(SAS),
∴AB=AC,
∴∠B=∠C=40°,
在△AEC中,∠CAE+∠C+∠AEC=180°,
∴∠CAE=180°-40°-110°=30°,
故答案为:30.
考点梳理
考点
分析
点评
等腰三角形的性质.
根据AD=AE,BD=EC,∠ADB=∠AEC=110°,可知△ADB≌△AEC,可得出AB=AC,根据等腰三角形的性质即可解答.
本题考查了等腰三角形的性质,属于基础题,关键是先求出AB=AC,再根据等腰三角形等边对等角的关系即可.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )