试题
题目:
如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,那么∠C=
20
20
度.
答案
20
解:在DC上截取DE=DB,连接AE,
设∠C=x,
∵AB+BD=DC,DE=DB,
∴CE=AB,
又∵AD⊥BC,DB=DE,
∴直线AD是BE的垂直平分线,
∴AB=AE,
∴CE=AE,
∴∠B=∠AEB,∠C=∠CAE,
又∵∠AEB=∠C+∠CAE,
∴∠AEB=2x,
∴∠B+∠C=3x=180°-120°=60°,
∴∠C=20°.
故答案是:20°.
考点梳理
考点
分析
点评
专题
等腰三角形的性质.
由AB+BD=DC,易想到可作辅助线DE=DB,然后连接AE,从而可出现两个等腰三角形,一个是△ABE,一个是△ACE,利用三角形外角的性质,易求∠B=2∠C,再利用三角形内角和定理可求∠C.
本题考查了线段垂直平分线的判定和性质、等腰三角形的性质、三角形内角和定理、三角形外角性质.
计算题.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )