试题
题目:
有一等腰钝角三角形纸片,若能从一个顶点出发,将其剪成两个等腰三角形纸片,则等腰三角形纸片的顶角为
108
108
度.
答案
108
解:∵AB=AC,
∴∠B=∠C,
设∠B=∠C=x,
∵AB=BD,AD=DC,
∴∠BAD=∠BDA,∠DAC=∠C,
∴∠ADB=2∠C,
∴∠BAC=3x,
∵∠BAC+∠B+∠C=180°,
∴5x=180°,
∴x=36°,
∴∠BAC=3x=108°,
故答案为:108.
考点梳理
考点
分析
点评
专题
等腰三角形的性质;三角形内角和定理;三角形的外角性质.
根据等腰三角形的性质可得到几组相等的角,再根据三角形外角的性质可得到∠BAC与∠B的关系,再根据三角形内角和定理即可求得顶角的度数.
此题主要考查等腰三角形的性质,三角形外角的性质及三角形内角和定理的综合运用.
计算题.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )