答案
(1)解:∵△ABD为等腰直角三角形,
∴∠DBA=45°.
又∵AB=AC,∠BAC=40°,
∴∠ABC=70°.
∴∠DBC=115°;
(2)证明:∵△ABD和△ACE均为等腰直角三角形,
∴∠BAD=∠CAE=90°,AB=AD,AC=AE.
又∵AB=AC,
∴AB=AD=AC=AE.
∴△ABD≌△ACE.
∴BD=CE.
(1)解:∵△ABD为等腰直角三角形,
∴∠DBA=45°.
又∵AB=AC,∠BAC=40°,
∴∠ABC=70°.
∴∠DBC=115°;
(2)证明:∵△ABD和△ACE均为等腰直角三角形,
∴∠BAD=∠CAE=90°,AB=AD,AC=AE.
又∵AB=AC,
∴AB=AD=AC=AE.
∴△ABD≌△ACE.
∴BD=CE.