试题
题目:
(2013·义乌市)如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=
70°
70°
.
答案
70°
解:∵AD⊥BC,∠AOC=125°,
∴∠C=∠AOC-∠ADC=125°-90°=35°,
∵D为BC的中点,AD⊥BC,
∴OB=OC,
∴∠OBC=∠C=35°,
∵OB平分∠ABC,
∴∠ABC=2∠OBC=2×35°=70°.
故答案为:70°.
考点梳理
考点
分析
点评
专题
线段垂直平分线的性质;角平分线的性质;等腰三角形的性质.
先根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠C,再根据线段垂直平分线上的点到线段两端点的距离相等可得OB=OC,根据等边对等角的性质求出∠OBC=∠C,然后根据角平分线的定义解答即可.
本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,角平分线的定义,是基础题,准确识图并熟记各性质是解题的关键.
压轴题.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )