答案

(1)证明:在△ABE和△CBF中,
∵
,
∴△ABE≌△CBF(SAS).
∴AE=CF.
(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,
∴∠CAB=∠ACB=
(180°-90°)=45°,∠EAB=45°-30°=15°.
∵△ABE≌△CBF,
∴∠EAB=∠FCB=15°.
∵BE=BF,∠EBF=90°,
∴∠BFE=∠FEB=45°.
∴∠EFC=180°-90°-15°-45°=30°.

(1)证明:在△ABE和△CBF中,
∵
,
∴△ABE≌△CBF(SAS).
∴AE=CF.
(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,
∴∠CAB=∠ACB=
(180°-90°)=45°,∠EAB=45°-30°=15°.
∵△ABE≌△CBF,
∴∠EAB=∠FCB=15°.
∵BE=BF,∠EBF=90°,
∴∠BFE=∠FEB=45°.
∴∠EFC=180°-90°-15°-45°=30°.