试题

题目:
青果学院如图,等腰三角形ABC的顶角为120°,底边BC=
3
2
,则腰长AB为(  )



答案
C
青果学院解:过点A作AD⊥BC于点D,
∴BD=CD,∠BAD=∠CAD,
∴BD=
3
4

∵∠BAC=120°,
∴∠BAD=∠CAD=60°,
∴∠B=30°,
∴在Rt△ABD中,设AD=x,
则AB=2x,
根据勾股定理,x2+(
3
4
2=(2x)2
解得,x=
1
4

所以AB=2×
1
4
=
1
2

故选C.
考点梳理
等腰三角形的性质.
过点A作AD⊥BC于点D,利用等腰三角形的性质,点D是BC的中点,故在△ABD中,可以求出AB的值.
本题主要考查了等腰三角形三线合一这一性质,即等腰三角形底边上的高线、中线,顶角的平分线三线合一.正确作出辅助线是解答本题的关键.
找相似题