试题
题目:
如图,已知在△ABC中,AB=AC,∠ACD=112°,求△ABC各内角的度数.
答案
解:∵∠ACD=112°,
∴∠ACB=180°-∠ACD=68°,
∵AB=AC,
∴∠B=∠ACB=68°,
∴∠BAC=180°-∠B-∠ACB=44°.
答:△ABC三内角的度数分别是68°,68°,44°.
解:∵∠ACD=112°,
∴∠ACB=180°-∠ACD=68°,
∵AB=AC,
∴∠B=∠ACB=68°,
∴∠BAC=180°-∠B-∠ACB=44°.
答:△ABC三内角的度数分别是68°,68°,44°.
考点梳理
考点
分析
点评
专题
等腰三角形的性质;对顶角、邻补角;三角形内角和定理.
根据邻补角定义求出∠ACB,根据等腰三角形性质求出∠B,根据三角形内角和定理求出∠BAC即可.
本题主要考查对等腰三角形性质,三角形的内角和定理,邻补角定义等知识点的理解和掌握,熟练运用性质进行计算是解此题的关键.
计算题.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )