试题
题目:
(2013·东城区一模)已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连结CF.
求证:BE=CF.
答案
证明:∵AB=AC,点D是BC的中点,
∴∠CAD=∠BAD.
又∵∠EAB=∠BAD,
∴∠CAD=∠EAB.
在△ACF和△ABE中,
AC=AB
∠CAF=∠BAE
AF=AE
∴△ACF≌△ABE(SAS).
∴BE=CF.
证明:∵AB=AC,点D是BC的中点,
∴∠CAD=∠BAD.
又∵∠EAB=∠BAD,
∴∠CAD=∠EAB.
在△ACF和△ABE中,
AC=AB
∠CAF=∠BAE
AF=AE
∴△ACF≌△ABE(SAS).
∴BE=CF.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰三角形的性质.
根据等腰三角形的性质可得∠CAD=∠BAD,由等量关系可得∠CAD=∠EAB,有SAS可证△ACF≌△ABE,再根据全等三角形的对应边相等即可得证.
此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度中等,注意掌握数形结合思想的应用.
证明题.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )