试题
题目:
已知:如图,在△ABC中,AB=AC,∠BAC=120°,DE垂直平分线AB交BC于点D,垂足为E,且DE=2.求AC的长.
答案
解:∵AB=AC,∠BAC=120°,
∴∠B=
1
2
(180°-∠BAC)=
1
2
(180°-120°)=30°,
∵DE是AB的垂直平分线,
∴DE⊥AB,AB=2BE,
在Rt△BDE中,BD=2DE=2×2=4,
BE=
BD
2
-DE
2
=
4
2
-2
2
=2
3
,
∴AB=2BE=2×2
3
=4
3
,
AC=AB=4
3
.
解:∵AB=AC,∠BAC=120°,
∴∠B=
1
2
(180°-∠BAC)=
1
2
(180°-120°)=30°,
∵DE是AB的垂直平分线,
∴DE⊥AB,AB=2BE,
在Rt△BDE中,BD=2DE=2×2=4,
BE=
BD
2
-DE
2
=
4
2
-2
2
=2
3
,
∴AB=2BE=2×2
3
=4
3
,
AC=AB=4
3
.
考点梳理
考点
分析
点评
线段垂直平分线的性质;等腰三角形的性质.
根据等腰三角形两底角相等求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,然后利用勾股定理列式求出BE,再求出AB,即可得解.
本题考查了线段垂直平分线的定义,等腰三角形的性质,勾股定理的应用,以及直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )