答案
C
解:∵BE=BA,
∴∠BAE=∠BEA,
∴∠B=180°-2∠BAE,①
∵CD=CA,
∴∠CAD=∠CDA,
∴∠C=180°-2∠CAD,②
①+②得:∠B+∠C=360°-2(∠BAE+∠CAD)
∴180°-∠BAC=360°-2[(∠BAD+∠DAE)+(∠DAE+∠CAE)],
∴-∠BAC=180°-2[(∠BAD+∠DAE+∠CAD)+∠DAE],
∴-∠BAC=180°-2(∠BAC+∠DAE),
∴2∠DAE=180°-∠BAC.
∵∠BAC=100°,
∴2∠DAE=180°-100°=80°,
∴∠DAE=40°,
故选C.