试题
题目:
已知:如图,∠ACB=90°,D、E是AB上的两点,且AE=AC,BD=BC,EF⊥CD于F,
求证:CF=EF.
答案
证明:连接CE.
∵AE=AC,
∴∠1+∠2=∠AEC=∠3+∠B.①
同理,∠2+∠3=∠1+∠A.②
①+②得 2∠2=∠A+∠B.
∵∠ACB=90°,
∴∠A+∠B=90°.
∴∠2=45°.
∵EF⊥CD,∴∠CFE=90°.
∴∠CEF=45°=∠2,
∴EF=CF.
证明:连接CE.
∵AE=AC,
∴∠1+∠2=∠AEC=∠3+∠B.①
同理,∠2+∠3=∠1+∠A.②
①+②得 2∠2=∠A+∠B.
∵∠ACB=90°,
∴∠A+∠B=90°.
∴∠2=45°.
∵EF⊥CD,∴∠CFE=90°.
∴∠CEF=45°=∠2,
∴EF=CF.
考点梳理
考点
分析
点评
等腰三角形的性质.
连接CE.根据等腰三角形性质及外角的性质,证明∠ECF=45°,从而由∠ECF=∠FEC得证.
此题考查等腰三角形的判定和性质,难度偏大.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )