试题
题目:
若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是( )
A.18
B.15
C.18或15
D.无法确定
答案
C
解:当7为底时,其它两边都为4,7、4、4可以构成三角形,周长为15;
当7为腰时,其它两边为4和7,4、7、7可以构成三角形,周长为18,
所以答案是18或15.
故选C.
考点梳理
考点
分析
点评
等腰三角形的性质;三角形三边关系.
因为等腰三角形的两边分别为7和4,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.
本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )