试题
题目:
如图,∠BAC=110°,AB=AC,若MP和NQ分别垂直平分AB和AC.求∠PAQ的度数.
答案
解:∵AB=AC,∠BAC=110°
∴∠B=∠C=
1
2
(180°-110°)=35°
又∵MP、MQ分别垂直平分AB和AC,
∴BP=AP,CQ=AQ,
∴∠BAP=∠B=35°,∠CAQ=∠C=35°
∴∠PAQ=110°-35°-35°=40°.
解:∵AB=AC,∠BAC=110°
∴∠B=∠C=
1
2
(180°-110°)=35°
又∵MP、MQ分别垂直平分AB和AC,
∴BP=AP,CQ=AQ,
∴∠BAP=∠B=35°,∠CAQ=∠C=35°
∴∠PAQ=110°-35°-35°=40°.
考点梳理
考点
分析
点评
线段垂直平分线的性质;等腰三角形的性质.
求出∠B、∠C度数,根据线段垂直平分线得出BP=AP,CQ=AQ,推出∠BAP=∠B=35°,∠CAQ=∠C=35°即可求出答案.
本题考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )