试题
题目:
已知,如图,△ABC中,AB=AC,点D、E、F分别在边AB,BC,AC上,且BD=CE,∠B=∠DEF,请你判断线段BE与CF有什么关系?并证明.
答案
解:BE=CF;
理由:∵AB=AC,
∴∠B=∠C,
∵∠B=∠DEF,
∴∠1+∠2=∠2+∠3,
∴∠1=∠3,
在△DBE和△ECF中,
∠1=∠3
DB=EC
∠B=∠C
,
∴△DBE≌△ECF(ASA),
∴EB=EF.
解:BE=CF;
理由:∵AB=AC,
∴∠B=∠C,
∵∠B=∠DEF,
∴∠1+∠2=∠2+∠3,
∴∠1=∠3,
在△DBE和△ECF中,
∠1=∠3
DB=EC
∠B=∠C
,
∴△DBE≌△ECF(ASA),
∴EB=EF.
考点梳理
考点
分析
点评
全等三角形的判定与性质;等腰三角形的性质.
首先证明∠B=∠C,∠1=∠3,再证明△DBE≌△ECF,根据全等三角形的性质可得EB=EF.
此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )