试题
题目:
已知等腰三角形的一边等于3,另一边等于6,求它的周长.
答案
解:当3为腰,6为底时,
∵3+3=6,
∴不能构成三角形;
当腰为6时,
∵3+6>6,
∴能构成三角形,
∴等腰三角形的周长为:6+6+3=15.
故它的周长为15.
解:当3为腰,6为底时,
∵3+3=6,
∴不能构成三角形;
当腰为6时,
∵3+6>6,
∴能构成三角形,
∴等腰三角形的周长为:6+6+3=15.
故它的周长为15.
考点梳理
考点
分析
点评
专题
等腰三角形的性质;三角形三边关系.
此题先要分类讨论,已知等腰三角形的一边等于3,另一边等于6,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.
此题考查了等腰三角形的基本性质及分类讨论的思想方法,另外求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
分类讨论.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )