试题
题目:
如图,△ABC中,AB=AC,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,问∠BDE与∠CDF是否相等?为什么?
答案
解:相等,
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC
∴DE=DF
∵AB=AC,AD是∠BAC的平分线
∴BD=DC
∴Rt△BED≌Rt△CFD(HL)
∴∠BDE=∠CDF.
解:相等,
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC
∴DE=DF
∵AB=AC,AD是∠BAC的平分线
∴BD=DC
∴Rt△BED≌Rt△CFD(HL)
∴∠BDE=∠CDF.
考点梳理
考点
分析
点评
等腰三角形的性质;全等三角形的判定与性质.
根据等腰三角形的性质得到BD=DC,再利用HL判定Rt△BED≌Rt△CFD,便可得到∠BDE=∠CDF
此题主要考查学生对等腰三角形的性质的理解及运用.利用三角形全等证明角相等时最常用方法之一,要熟练掌握.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )