试题
题目:
在△ABC中,点D是AB上一点,△ADC与△BDC都是等腰三角形且底边分别为AC,BC,则∠ACB的度数为( )
A.60°
B.72°
C.90°
D.120°
答案
C
解:如图:
∵△ADC与△BDC是等腰三角形且底边分别为AC、BC,
∴∠A=∠ACD,∠B=∠DCB,
∴∠A+∠B=∠ACB,
∵∠A+∠B+∠ACB=180°,
∴∠ACB=90°.
故选C.
考点梳理
考点
分析
点评
等腰三角形的性质;三角形内角和定理.
根据三角形内角和定理可得∠A+∠B+∠ACB=180°,再根据等腰三角形的性质可得∠A+∠B=∠ACB,则可求∠ACB的度数.
考查了等腰三角形的性质和三角形内角和定理,得到∠A+∠B=∠ACB是解题的关键.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )