答案

解:EF⊥BC.
延长EF交BC于点D,设∠AEF=∠AFE=∠BFD=x,
∵AB=AC,
∴∠B=∠C,
∵∠B+∠C=∠BAE=180°-2x,
∴∠B=∠C=90°-x,
∴∠BDE=180°-∠B-∠BFD=180°-(90°-x)-x=90°,
∴EF⊥BC.

解:EF⊥BC.
延长EF交BC于点D,设∠AEF=∠AFE=∠BFD=x,
∵AB=AC,
∴∠B=∠C,
∵∠B+∠C=∠BAE=180°-2x,
∴∠B=∠C=90°-x,
∴∠BDE=180°-∠B-∠BFD=180°-(90°-x)-x=90°,
∴EF⊥BC.