试题
题目:
如图,点E为△ABC边AB上一点,AC=BC=BE,AE=EC,BD⊥AC于D,求∠CBD的度数.
答案
解:设∠A=x°,
∵AC=BC,AE=EC,
∴∠ABC=∠A=x°∠ACE=∠A=x°,
∴∠BEC=∠A+∠ACE=2x°,
∵BC=BE,
∴∠BEC=∠BCE=2x°,
在△BEC中,∠BEC+∠BCE+∠EBC=180°,
∴2x+2x+x=180,
解得:x=36,
∴∠A=∠ABC=36°,
∴∠CBD=90°-∠A-∠ABC=18゜.
解:设∠A=x°,
∵AC=BC,AE=EC,
∴∠ABC=∠A=x°∠ACE=∠A=x°,
∴∠BEC=∠A+∠ACE=2x°,
∵BC=BE,
∴∠BEC=∠BCE=2x°,
在△BEC中,∠BEC+∠BCE+∠EBC=180°,
∴2x+2x+x=180,
解得:x=36,
∴∠A=∠ABC=36°,
∴∠CBD=90°-∠A-∠ABC=18゜.
考点梳理
考点
分析
点评
等腰三角形的性质.
首先设∠A=x°,由AC=BC=BE,AE=EC,可表示出∠BEC,∠BCE与∠CBE的值,继而可得方程:2x+2x+x=180,解此方程即可求得答案.
此题考查了等腰三角形的性质、三角形外角的性质以及三角形内角和定理.此题难度适中,注意掌握方程思想与数形结合思想的应用.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )