试题
题目:
已知:△ABC与△ADE中,AD=AC,∠B=∠E,∠BAC+∠DAE=180°.求证:BC=DE.
答案
证明:延长BA到F使AF=AE,再连接CF,
∵∠BAC+∠DAE=180°,∠BAC+∠FAC=180°,
∴∠FAC=∠DAE,
在△FAC和△EAD中,
AF=AE
∠FAC=∠EAD
AD=AC
,
∴△FAC≌△EAD(SAS),
∴FC=DE,∠E=∠F,
∵∠B=∠E,
∴∠F=∠B,
∴CF=BC,
∴DE=BC.
证明:延长BA到F使AF=AE,再连接CF,
∵∠BAC+∠DAE=180°,∠BAC+∠FAC=180°,
∴∠FAC=∠DAE,
在△FAC和△EAD中,
AF=AE
∠FAC=∠EAD
AD=AC
,
∴△FAC≌△EAD(SAS),
∴FC=DE,∠E=∠F,
∵∠B=∠E,
∴∠F=∠B,
∴CF=BC,
∴DE=BC.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰三角形的性质.
延长BA到F使AF=AE,再连接CF,首先证明△FAC≌△EAD可得FC=DE,∠E=∠F,再由∠B=∠E可得∠F=∠B,根据等角对等边可得CF=BC,进而得到DE=BC.
此题主要考查了全等三角形的判定与性质,关键是正确作出辅助线,证明△FAC≌△EAD.
证明题.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )