试题
题目:
如图,△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:
(1)AD⊥EF;
(2)当有一点G从点D向A运动时,GE⊥AB于E,GF⊥AC于F,此时上面结论是否成立?
答案
证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DE=DF,又AD=AD,
∴△ADE≌△ADF(HL).
∴AE=AF,又∠DAE=∠DAF,
∴AD⊥EF.
(2)成立.(理由同上)
证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DE=DF,又AD=AD,
∴△ADE≌△ADF(HL).
∴AE=AF,又∠DAE=∠DAF,
∴AD⊥EF.
(2)成立.(理由同上)
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰三角形的性质.
(1)欲证AD⊥EF,先证△AEF是等腰三角形.
根据角平分线性质及三角形全等易证;
(2)点G虽是动点,实质与点D完全一样,因此成立.
本题考查了全等三角形的判定与性质及等腰三角形的性质;证明三角形全等是正确解答本题的关键.
证明题;动点型.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )