试题

题目:
如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交直线BC于点M
(1)如图(1),若∠A=40°,求∠NMB的大小.
(2)如图(2),如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的大小.
(3)你发现了什么规律?写出猜想并证明.
青果学院
答案
解:(1)∵AB=AC,∠A=40°,
∴∠ABC=∠ACB=
1
2
(180°-∠A)=70°,
∵MN是AB的垂直平分线,
∴∠MNB=90°,
∴∠NMB=90°-∠B=20°.

(2)∵AB=AC,∠A=70°,
∴∠B=∠ACB=
1
2
(180°-∠A)=55°,
∵MN是AB的垂直平分线,
∴∠MNB=90°,
∴∠NMB=90°-∠B=35°.

(3)∠NMB=
1
2
∠A,
理由是:∵AB=AC,
∴∠B=∠ACB=
1
2
(180°-∠A)=90°-
1
2
∠A,
∵MN是AB的垂直平分线,
∴∠MNB=90°,
∴∠NMB=90°-∠B=90°-(90°-
1
2
∠A)=
1
2
∠A.
解:(1)∵AB=AC,∠A=40°,
∴∠ABC=∠ACB=
1
2
(180°-∠A)=70°,
∵MN是AB的垂直平分线,
∴∠MNB=90°,
∴∠NMB=90°-∠B=20°.

(2)∵AB=AC,∠A=70°,
∴∠B=∠ACB=
1
2
(180°-∠A)=55°,
∵MN是AB的垂直平分线,
∴∠MNB=90°,
∴∠NMB=90°-∠B=35°.

(3)∠NMB=
1
2
∠A,
理由是:∵AB=AC,
∴∠B=∠ACB=
1
2
(180°-∠A)=90°-
1
2
∠A,
∵MN是AB的垂直平分线,
∴∠MNB=90°,
∴∠NMB=90°-∠B=90°-(90°-
1
2
∠A)=
1
2
∠A.
考点梳理
线段垂直平分线的性质;等腰三角形的性质.
(1)根据等腰三角形的性质和三角形内角和定理求出∠B,求出∠MNB=90°,根据三角形内角和定理得出∠NMB=90°-∠B即可.
(2)根据等腰三角形的性质和三角形内角和定理求出∠B,求出∠MNB=90°,根据三角形内角和定理得出∠NMB=90°-∠B即可.
(3)根据等腰三角形的性质和三角形内角和定理求出∠B,求出∠MNB=90°,根据三角形内角和定理得出∠NMB=90°-∠B即可.
本题考查了等腰三角形的性质,三角形内角和定理和线段垂直平分线性质的应用,主要考查学生的推理能力,求解过程类似.
找相似题