试题
题目:
如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,给出以下个结论:
①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;
④
S
四边形CDFE
=
1
2
S
△ABC
.当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),上述结论中始终正确的有( )
A.1个
B.2个
C.3个
D.4个
答案
C
解:连接CF,
∵AC=BC,∠ACB=90°,点F是AB中点,
∴∠A=∠B=45°,CF⊥AB,∠ACF=
1
2
∠ACB=45°,CF=AF=BF=
1
2
AB,
∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正确;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正确;
∴S
△DCF
=S
△BEF
,
∴S
四边形CDFE
=S
△CDF
+S
△CEF
=S
△EBF
+S
△CEF
=S
△CBF
=
1
2
S
△ABC
,故④正确.
若EF⊥BC时,则可得:四边形CDFE是矩形,
∵DF=EF,
∴四边形CDFE是正方形,故②错误.
∴结论中始终正确的有①③④.
故选C.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;三角形的面积;等腰三角形的性质.
首先连接CF,由等腰直角三角形的性质可得:∴∠A=∠B=45°,CF⊥AB,∠ACF=
1
2
∠ACB=45°,CF=AF=BF=
1
2
AB,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≌△EBF,由全等三角形的性质可得CD=BE,DF=EF,也可证得S
四边形CDFE
=
1
2
S
△ABC
,问题得解.
此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.
综合题.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )