试题
题目:
已知△ABC是等腰三角形,且∠A=40°,那么∠ACB的外角的度数是 ( )
A.110°
B.140°
C.110°或140°
D.以上都不对
答案
D
解:∵等腰三角形两底角相等,三角形的任一外角等于和它不相邻的两个内角之和,
∴当顶角∠A=40°时,则∠C=∠B=
1
2
(180-40)=70°,
∴∠ACB的外角的度数是180-70=110°,
∴当底角∠A=40°时,∠B=40°,则∠ACB的外角的度数为2∠A=2×40=80°,
当底角∠A=40°时,∠ACB=40°,则∠ACB的外角的度数为180-40=140°.
故选D.
考点梳理
考点
分析
点评
专题
等腰三角形的性质.
利用等腰三角形的性质,得到两底角相等,结合三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和,可直接得到结果.
此题主要考查了等腰三角形的性质与三角形内角与外角的关系;此题要采用分类讨论的思想,本题比较简单,属于基础题.
计算题;分类讨论.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )