试题
题目:
如图△ABC中,AB=AC,角平分线AD、BD相交于点D.若∠ABC=80°,则∠ADB等于( )
A.100°
B.110°
C.120°
D.130°
答案
D
解:∵AB=AC,
∴∠C=∠ABC=80°,
∴∠BAC=180°-∠C-∠ABC=180°-80°-80°=20°
∵AD,BD分别是∠BAC,∠ABC的角平分线,
∴∠BAD=
1
2
∠BAC=
1
2
×20°=10°.
∠ABD=
1
2
×∠ABC=
1
2
×80°=40°.
∴∠ADB=180°-10°-40°=130°.
故选D.
考点梳理
考点
分析
点评
等腰三角形的性质.
因为AB=AC,∠ABC=80°,可求出∠C的度数,进而求出∠BAC的度数,根据角平分线的性质,可求出∠BAD和∠DBA的度数,进而求出∠ADB的度数.
本题考查等腰三角形的性质,等腰三角形的两个底角相等以及三角形的内角和为180°,从而可列方程求解.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )