试题

题目:
青果学院如图△ABC中,AB=AC,角平分线AD、BD相交于点D.若∠ABC=80°,则∠ADB等于(  )



答案
D
解:∵AB=AC,
∴∠C=∠ABC=80°,
∴∠BAC=180°-∠C-∠ABC=180°-80°-80°=20°
∵AD,BD分别是∠BAC,∠ABC的角平分线,
∴∠BAD=
1
2
∠BAC=
1
2
×20°=10°.
∠ABD=
1
2
×∠ABC=
1
2
×80°=40°.
∴∠ADB=180°-10°-40°=130°.
故选D.
考点梳理
等腰三角形的性质.
因为AB=AC,∠ABC=80°,可求出∠C的度数,进而求出∠BAC的度数,根据角平分线的性质,可求出∠BAD和∠DBA的度数,进而求出∠ADB的度数.
本题考查等腰三角形的性质,等腰三角形的两个底角相等以及三角形的内角和为180°,从而可列方程求解.
找相似题