试题
题目:
等腰三角形的顶角的度数为30°,则一腰上的高与底边的夹角为( )
A.60°
B.30°
C.15°
D.75°
答案
C
解:如图:△ABC中,AB=AC,BD是边AC上的高.
∵∠A=30°,且AB=AC,
∴∠ABC=∠C=(180°-30°)÷2=75°;
在Rt△BDC中,
∠BDC=90°,∠C=75°;
∴∠DBC=90°-75°=15°.
故选:C.
考点梳理
考点
分析
点评
等腰三角形的性质.
根据等腰三角形的性质和三角形内角和定理可求出等腰三角形的底角的度数,然后在一腰上的高与底边所构成的直角三角形中,可得出所求角的度数.
本题主要考查等腰三角形的性质,及三角形内角和定理.求一个角的大小,常常通过三角形内角和来解决,注意应用.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )