试题
题目:
(2005·武汉)如图,△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠DAE的度数为( )
A.30°
B.40°
C.60°
D.80°
答案
C
解:设∠C=x,∵AB=AC
∴∠B=∠C=x
∴∠AED=x+10°
∵AD=DE,∴∠DAE=∠AED=x+10°
根据三角形的内角和定理,得x+x+(20°+x+10°)=180°
解得x=50°,则∠DAE=60°
故选C.
考点梳理
考点
分析
点评
专题
等腰三角形的性质;三角形内角和定理;三角形的外角性质.
先根据三角形外角性质,用∠C表示出∠AED,再根据等边对等角和三角形内角和定理,列出等式即可求出∠C的度数,再求∠DAE也就不难了.
此题能够根据等腰三角形的性质以及三角形的外角的性质,用同一个未知数表示各角,进一步根据三角形的内角和定理列方程求解.
计算题.
找相似题
(2013·徐州)若等腰三角形的顶角为80°,则它的底角度数为( )
(2013·新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
(2013·南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )
(2012·徐州)如果等腰三角形的两边长分别为2和5,则它的周长为( )
(2011·台湾)如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为何( )