试题
题目:
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a-b)
2
的值是( )
A.1
B.2
C.12
D.13
答案
A
解:根据勾股定理可得a
2
+b
2
=13,
四个直角三角形的面积是:
1
2
ab×4=13-1=12,即:2ab=12
则(a-b)
2
=a
2
-2ab+b
2
=13-12=1.
故选A.
考点梳理
考点
分析
点评
勾股定理的证明.
根据勾股定理可以求得a
2
+b
2
等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a-b)
2
=a
2
-2ab+b
2
即可求解.
本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a
2
+b
2
和ab的值是关键.
找相似题
(2010·南宁)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是( )
利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证( )公式.
(2010·温州)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边PQ上,那么△PQR的周长等于
27+13
3
27+13
3
.
(2008·湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名
的定理,这个定理称为
勾股定理
勾股定理
,该定理的结论其数学表达式是
a
2
+b
2
=c
2
a
2
+b
2
=c
2
.
如图,利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明
数学中一个十分著名的定理,这个定理结论的数学表达式是
a
2
+b
2
=c
2
a
2
+b
2
=c
2
.